AUXILIARIA IN LINE CONFERENCE

分会场二:基础设施

计算的创新 AWS Graviton 系列揭秘

张洋,AWS 解决方案架构师经理

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS 中国(宁夏)区域由西云数据运营 AWS 中国(北京)区域由光环新网运营

AWS Graviton 系列回顾

AWS Graviton 2 系列介绍

AWS Graviton 2 深度分析

AWS M6G 系列场景性能展示

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Intel[®] Xeon Scalable processors

AMD EPYC processors

AMD

Graviton processors

一代AWS Graviton processor

基于 64位 Arm Neoverse 核心由 AWS 进行定制 Custom AWS silicon with 64-bit Arm Neoverse cores

为优化云原生负载而生 Targeted optimizations for cloud-native workloads

助力您快速创新,构建和迭代 Rapidly innovate, build, and iterate on behalf of customers

AWS Graviton processor 赋能的 EC2 A1实例

高可用性

9个区域

北美 (N. Virginia, Oregon, Ohio) 欧洲 (Ireland, Frankfurt) 亚太 (Mumbai, Sydney, Tokyo, Singapore)

横向扩展负载

应用场景

Web 层 容器化 微服务 基于ARM的软件应用开发 最高节省 45% 费用

构建于 AWS Nitro 系统平台

灵活配置

6个实例类型

提供 裸金属 配置 最多 16 vCPUs, 32GiB 内存 最多 10 Gbps 网络, 3.5 Gbps EBS

Amazon EC2 A1 详细参数

Instance	CPU Arch	vCPUs	Memory (GB)	Network bandwidth (Gbps)	Amazon EBS- optimized	Amazon EBS bandwidth (Mbps)	EBS-optimized burst bandwidth (Mbps)
a1.medium	arm64	1	2	Up to 10	Yes	300	Up to 3500
a1.large	arm64	2	4	Up to 10	Yes	525	Up to 3500
a1.xlarge	arm64	4	8	Up to 10	Yes	800	Up to 3500
a1.2xlarge	arm64	8	16	Up to 10	Yes	1750	Up to 3500
a1.4xlarge	arm64	16	32	Up to 10	Yes	3500	3500

5 instance sizes, up to 10 Gbps networking and EBS-optimized burst US East (N. Virginia and Ohio), US West (Oregon), Asia Pacific (Mumbai, Singapore, Sydney, and Tokyo), and Europe (Frankfurt and Ireland) More regions coming soon!

A1 versus C5/C4

	a1.4xlarge	c5.9xlarge	c4.8xlarge
CPU	Alpine AL73400	Cascade Lake / Platinum 8124M	Intel Xeon E5-2666 v3
ISA	ARM v8	x86	x86
Microarchitecture	Cortex-A72	Cascade Lake / Skylake	Haswell
Core count	4 * 4	18	18
Thread count	16	18 * 2	18 * 2
Base frequency	2.3 GHz	3.0 GHz	2.9 GHz
Turbo	None	3.5 GHz (1 core) 3.4 GHz (all cores)	3.5 GHz (1 core) 3.2 GHz (all cores)
L1i cache	48 KB * 16	32 KB * 18	32 KB * 10
L1d cache	32 KB * 16	32 KB * 18	32 KB * 10
L2 cache	2 MB * 4	1 MB * 18	256 KB * 10
L3 cache	None	1.375 MB * 18	25 MB shared
Launched	2018 Q4	2017	2015

	CPU & Memory	NIC Queue	Cost (\$ per hour)
a1.large	2core 4GB	1	0.051
c4.large	2core 3.75GB	2	0.10
c5.large	2core 4GB	2	0.085
a1.xlarge	4core 8GB	1	0.102
c4.xlarge	4core 7.5GB	2	0.199
c5.xlarge	4core 8GB	4	0.17

A1 实例非常适合网络敏

- Pricing: A1 < C5 < C4 \bullet
- 40% off to C5, 49% off to C4 \bullet

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Graviton2 Processor

AWS Graviton 2 赋能 6 系列新实例

可申请 M6g 预览版

2020 敬请期待

所有实例配置增强型网络、EBS 和 3 个本地 NVMe 闪存

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

内存优化型 8GB DRAM/vCPU R6g R6gd

AWS Graviton2 处理器

AWS Graviton 2 处理器: 深入探索

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS Graviton 2 宏观对比

AWS Graviton processor

- AWS 第一款 ARM 处理器
- 最大 16 核
- A1 系列 ullet
- 16 nm 工艺
- ~50 亿个晶体管

AWS Graviton2 processor

- 不断创新改进
- 最大 64核
- M6G系列 ullet
- 7 nm 工艺
- ~300 亿个晶体管
- 7 倍性能提升
- 每 vCPU 约 2 倍性能提升

题 annapurnalabs T8K9491 1.34A ALC12B00-AL-A0-8-C

AWS Graviton 2 – 内核

- Arm Neoverse N1 内核
- Arm v8.2 指令集
- ARM N1 架构的经典实现
 - 每vCPU 64KB 1级指令与数据缓存, 1MB 2级缓存
 - 指令缓存连贯性
 - 中断, 虚拟化, 与上下文切换的低开销
 - 4-wide front-end, with 8-wide dispatch/issue
 - ・ 双倍 SIMD 单元
 - 使用 int8, fp16 指令加速机器学习
- 每个 vCPU 都是物理核心
 - 无超线程设计 (SMT)

Graviton2-互联

- 64 个核心通过 mesh 结构互联
- ~2 TB/s 对分带宽
- 32 MB LLC 三级缓存
 近 100 MB 用户可使用缓存
- 无 NUMA 设计
 - 每个内核访问其它内核与内存的路径一致
- 64 通道 PCle gen4
 - Provide flexibility for different instance configurations

Graviton2 – 系统

- ・ 8x DDR4-3200 通道 → 超过 200GB/s
 - 使用临时密钥与 AES-256 加密算法加密内存访问
 - 所有 CPU 核心访问内存享有一致性延迟
- 1Tbit/s 压缩算法加速器
 - 2xlarge 配置以上的实例将包含硬件级加密器
 - 发布前 DPDK 与 Linux 内核已经成功发布
 - 压缩效率高达 15GB/s 解压效率高达 11GB/s

Graviton2 赋能实例

Graviton2

Nitro Security Chip

Nitro Card

Industry leading performance

Integrated into motherboard Protects hardware resources

Amazon Elastic Block Store, Elastic Network Adapter Monitoring, and security

模板化设计,专业为您打造

Nitro Hypervisor

Lightweight hypervisor Memory and CPU allocation Bare Metal-like performance

Web and gaming servers

High performance computing

Media encoding

EDA

Analytics

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Open-source databases

In-memory caches

Amazon EC2 M6 具体参数表

Instance	vCPUs	Memory (GB)	Network Bandwidth (Gbps)	EBS Optimized	EBS Bandwidth (Mbps)	E Bi
m6g.medium	1	4	Up to 10	Yes	315	
m6g.large	2	8	Up to 10	Yes	630	
m6g.xlarge	4	16	Up to 10	Yes	1,188	
m6g.2xlarge	8	32	Up to 10	Yes	2,375	
m6g.4xlarge	16	64	Up to 10	Yes	4,750	
m6g.8xlarge	32	128	12Gbps	Yes	9,000	
m6g.12xlarge	48	192	20Gbps	Yes	13,500	
m6g.16xlarge	64	256	25Gbps	Yes	18,000	

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

EBS Optimized Burst Bandwidth (Mbps)

4,750
4,750
4,750
4,750
4,750
9,000
13,500
18,000

实测性能参考

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

SPEC cpu2017

- Industry standard CPU igodolintensive benchmark
- Run on all vCPUs concurrently ullet
- Comparing performance/vCPU igodol

* All SPEC scores estimates, compiled with GCC9 -O3 -march=native, run on largest single socket size for each instance type tested.

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

	_	

SPECfp2017 rate

Load Balancing with Nginx

NGINX v1.15.9, 512 clients, 128 GET/POST payloads, all HTTPS connections, AES128-GCM-SHA256, © 2020, AmaOpenSSIvicIs, 1n1 or 4 targets maghines wall tests run on 4xl size; load generator c5.9xl; web servers c5.4xls; All servers run in a cluster placement group

M5

Memcached v1.5.16, 16B keys, 128B values, 7.8M KV-pairs, 576 connections for load generation from 2x c5.9xlarge © 2020 Instances 16 additional formations used to measure latency from 1 additional c5.9xlarge,; each connection maintains 4096 outstanding requests; All servers in a cluster placement group

Memcached

Memcached v1.5.16, 16B keys, 128B values, 7.8M KV-pairs, 576 connections for load generation from 2x c5.9xlarge © 2020 stances 16 additional from ections used to measure latency from 1 additional c5.9xlarge, each connection maintains 4 outstanding requests; all servers in a cluster placement group

Media Encoding with x264

- Huge amount of video created daily ullet
- Encoding it reduces bandwidth to ulletdeliver and storage of that video
- Using libx264 encoder encoded ightarrowuncompressed 1080p to h264

(2	160%	
mes/s)	140%	
(Fran	120%	
nce (100%	
erformance	80%	
Perfo	60%	
	40%	

M5

uncompressed 1080p50, output encoded h264 1080p50

Machine Learning

- BERT: The state-of-the-art text encoder
 - Feature representation (encoding) is crucial for ML
 - Deep neural network for text feature representation
- Graviton2 has fp16 and int8 support to accelerate Machine Learning workloads
- M6g can outperform M5
 - M5 with AVX-512 is limited to FP32
 - With FP16 support M6g performs better for CPU based inference

BERT classification using TVM and 64 length sequence on CPUs d. Batch size of one; dedicated instances on xlarge size

EDA Performance – Arm and Cadence Xcellium

- Chip development is expensive
 - Design needs to be right the first time
- Arm uses millions of hours of CPU time per month to simulate their processor designs
 - Demand is highly variable depending on phase of the project
 - Perfect use-case for Amazon EC2
- Simulated Arm Cortex-A53 using Cadence Xcellium
 - 570 validation simulations on the the DPU RTL of the processor

Total Runtime

m6g.16xlarge

EDA Performance – Arm and Cadence Xcellium

- Chip development is expensive \bullet
 - Design needs to be right the first time
- Arm uses millions of hours of CPU time per \bullet month to simulate their processor designs
 - Demand is highly variable depending on phase of the project
 - Perfect use-case for Amazon EC2 \bullet
- Simulated Arm Cortex-A53 using Cadence \bullet Xcellium
 - 570 validation simulations on the the DPU RTL of the \bullet processor

AWS Graviton delivers significantly better performance per vCPU for EDA

How about a database workload?

- Scylla is a high-throughput, low latency Big Data database
 - Thread-per-core architecture guarantees full CPU utilization
 - I/O Scheduler guarantees peak I/O throughput
 - Can easily reach AWS I3's 15GB/s bandwidth limit
- Can you use Scylla on A1 instance?
 - Yes. It works, and it is supported
 - But doesn't reach peak performance
- M6g instances change the game
 - All CPU and memory-bound workloads are supported
 - 4xlarge \rightarrow 37.5k reads/s/core; 5x improvement over A1!
 - 64 vCPU theoretical limit around 2.4M reads/s
 - Amazon EBS is still instance storage^{2020, Amazon Web Services, Inc. or its affiliates. All rice}

M6gd completes the story

With a preview version of M6gd Over 5GB/s of disk bandwidth Close to 1M IOPS Enough for demanding storage workloads

Scylla welcomes the M6g series: ready for NoSQL

Graviton 2 实例拥有更低的总拥有成本

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

提供 40% 更高性价比

感谢参加 AWS INNOVATE 2020 在线技术大会

我们希望您在这里找到感兴趣的内容!

也请帮助我们完成投票打分和反馈问卷。

欲获取关于 AWS 的更多信息和技术内容,可以通过以下方式找到我们:

- 微信订阅号: AWS 云计算 (awschina)
- 微信服务号: AWS Builder 俱乐部 (amazonaws)
- 新浪微博: https://www.weibo.com/amazonaws/ 6
- 抖音:亚马逊云计算(抖音号: 266052872)
- 视频中心: http://aws.amazon.bokecc.com/
- 博客: https://aws.amazon.com/cn/blogs/china/ aws
 - 更多线上活动: https://aws.amazon.com/cn/about-aws/events/webinar/

© 2020, Amazon Web Services, Inc. or its affiliates. All rights reserved.

AWS 中国账户注册

AWS 全球账户注册

aws INNOV